Nuevos filtros para muestreo de particulado elaborados con *Lemna sp* y papel reciclado

Yandrelis Paz, Marina Colina, Rodolfo Salas, Antonio Aguilera, Renny Díaz y Brinolfo Montilla

In the present work, atmospheric PST filters for the sampling of particulate using *Lemna sp* and recycled paper were elaborated. The technology used to elaborate the samples was the semi-chemical pulping. The dimensions of the filters were 20.3 × 25.4 cm for different compositions of 20, 50 and 80 % *Lemna sp*. A sampler Hi-Vol., SN 3218 was used during 16 hours for particulate collection. The treatment of the sample was performed taking ¼ of the paper of filter, cutting it in pieces; this one was placed in a 125 mL Teflon beaker, then 10 mL HF, HNO₃ and H₂O deionized were added, for the treatment of the sample. A filter was in use as blank. In the atmospheric filters an analysis of captured particulate was realized, being a weight difference of 0,4794 g. The metal adsorption was studied for Al, B, Cu, Mg, Na and Zn in solution, individuals and in mixtures. Atomic Emission Spectrometry by Inductively Coupled Plasma (ICP-AES) was used to determine the concentration of the metals.

The metal concentrations found in the samples used as filters, were the following ones: 2486.3 ± 3.10 µg/m³ for Al; 52129.54 ± 0.59 µg/m³ for B; 2721.09 ± 0.24 µg/m³ for Cu; 1831.93 ± 0.72 µg/m³ for Mg; 30953.305 ± 4.0 µg/m³ for Na, 77.36 ± 0.12 µg/m³ for Zn. The results show that the filters are effective to analyze the studied metals.

Key words: *Lemna sp*, recycled paper, atmospheric particulate filters

En el presente trabajo se elaboraron filtros para el muestreo de particulado atmosférico PST utilizando *Lemna sp* y papel reciclado. La técnica utilizada para elaborar las muestras fue la del pulpeo semiquímico. Las dimensiones de los filtros fueron 20.3 × 25.4 cm a diferentes composiciones de 20, 50 y 80 % *Lemna sp*. Se utilizó un muestreador Hi-Vol., SN 3218, el cual se empleó durante 16 horas para la captación de particulado.

El tratamiento de la muestra se realizó tomando ¼ del papel de filtro, cortándolo en trozos. Este se colocó en un beaker de teflón de 125 mL, se adicionaron 10 mL de HF, HNO₃ y H₂O deionizada para el tratamiento de la muestra, se utilizó un filtro como blanco. Se realizó un análisis de particulado capturado en los filtros atmosféricos, encontrándose una diferencia de peso a 0,4794 g. Se estudió la adsorción de metales Al, B, Cu, Mg, Na y Zn en solución, individuales y en mezclas. Se empleó la técnica de Emisión Atómica con Plasma Inductivamente Acoplado (ICP-AES) para determinar la concentración de los metales.

Las concentraciones de metales encontradas en las muestras empleadas como filtros, fueron las siguientes: 2486.32 ± 3.10 µg/m³ para Al; 52129.54 ± 0.59 µg/m³ para B; 2721.09 ± 0.24 µg/m³ para Cu; 1831.93 ± 0.72 µg/m³ para Mg; 30953.305 ± 4.0 µg/m³ para Na; 77.36 ± 0.12 µg/m³ para Zn.

Los resultados muestran que los filtros son efectivos para la captación de los metales estudiados.

Key words: *Lemna sp*, papel reciclado, partículas atmosféricas, metales pesados, ICP

Introducción

La contaminación atmosférica es un problema de salud ambiental que afecta a los países en desarrollo y los países desarrollados por igual. Los efectos de la contaminación atmosférica sobre la salud son muy complejos, ya que hay muchas fuentes diferentes y sus efectos varían de un a otro. No es sólo la calidad del aire ambiente en las ciudades, sino también la calidad del aire en las zonas rurales y las zonas urbanas que están causando preocupación [1].

Los metales pesados constituyen un grupo de 40 elementos de la Tabla Periodérica que tienen una densidad mayor o igual a 5g/cm³ [2]. La biomasa microbiana puede juntar normalmente grandes cantidades de estos metales en un proceso llamado biodosolución [3].

Una de las consecuencias más graves de la presencia de metales tóxicos en el ambiente es que no son degradados, química o biológicamente por la naturaleza, lo que trae como consecuencia su persistencia en ella [1].

Las plantas acuáticas, denominadas también macrofitas, cumplen un papel muy importante en los ecosistemas acuáticos [4]. Debido a su movilidad en los sistemas acuáticos naturales y su toxicidad para las formas superiores de vida, los iones de los metales pesados presentes en los abastecimientos de aguas superficiales y subterráneos, constituyen elementos importantes de estudio que incluye los contaminantes inorgánicos más importantes en el ambiente [1].

La *Lemna sp*, de origen aparentemente asiático, se encuentra en casi todas las regiones del mundo, incluyendo algunas zonas frías. Estas plantas soporan una amplia variedad de condiciones ambientales; en relación a la temperatura puede desarrollarse en un rango de 5 a 45 °C, el pH puede oscilar entre poco más de 4 a 9, el agua puede ser muy blanda hasta muy dura, y la iluminación de escasa a muy alta [5].

El cultivo de *Lemnaceae* está documentado en la literatura por su utilización como “filtrado biológico”. Las plantas que crecen asimilan nutrientes del afluente de aguas residuales y sirven como removedores al ser cosechadas y transferidas a recipientes externos [6].

Las fibras procedentes de los árboles constituyen más del 90 % de la producción de celulosa a nivel mundial; por ello se pueden esperar diferentes efectos de ligandos orgánicos en la adsorción de metales pesados. La celulosa es una fibra vegetal que representa el 50 % de la constitución física del...
Viene de la página 11

árbol [7, 8]. El papel es un producto natural, biodegradable y reciclable, conformando un recurso renovable [9].

El papel y los productos relacionados con él se elaboran a partir de fibras de celulosa presentes en las plantas. Estas fibras pueden provenir de diferentes vegetales: algodón, madera, paja de cereales, etc., pero actualmente la mayor parte de la producción mundial del papel proviene de la madera. A la vez, un tercio del total de madera procesada en el mundo se emplea para la fabricación de pasta [9]. La fabricación de pasta, papel y derivados del papel alcanza cifras que sitúan esta industria entre las más grandes del mundo. La estructura básica de la pasta y el papel es un entramado de fibras de celulosa (polisacárido con 600 a 1.000 unidades de sacarosa) unidas mediante enlaces de hidrógeno [10].

Partículas suspendidas totales (PTS) se denominan a las partículas en el aire como el humo, hollín, polvo y aerosoles que siguen suspendidas y no que se disuelven con facilidad. Incluye partículas con un diámetro inferior a 100 micrómetros de diámetro (un micrómetro es de 1/1000 de un milímetro). En la fracción PM10 de las partículas suspendidas (PTS) destacan por su toxicidad y gran tiempo de permanencia en el aire de los elementos metálicos. Dichos elementos, una vez emitidos, pueden permanecer en el ambiente largos períodos de tiempo [11].

Están dadas las condiciones, para que la industria de pasta y papel deje de ser unas de las más contaminantes del mundo, innovando en la elaboración de papel con Lemna sp y papel reciclado, para así convertirse en un modelo ecológico a ser seguido por otros sectores. La industria de papel puede transformarse en un modelo de Producción Limpia, si adopta la explotación forestal sustentable, procesos no tóxicos, tecnología libre de efluentes, un máximo reciclaje de productos de papel y una disminución de consumo especialmente en los países industrializados.

Croos en 1998, determinó la composición de la familia de las Lemnaeae en porcentaje seco, obteniendo fibra cruda de 5.7 a 16.2 %, la misma incluía celulosa, hemi-celulosa y lignina [3].

Turrado y col. en el 2000, afirmaron que el uso de fibra reciclada, impacta directa y positivamente sobre el ambiente, disminuyendo la demanda de recursos forestales [12].

El trabajo más reciente es Chi-Wen Lin y col., en el 2008, caracterizaron la materia total suspendida cerca de un río en el centro de Taiwán. Un total de 12 elementos e iones inorgánicos fueron identificados a través de un espectrofotómetro de Emisión Atómica con Plasma Indirectamente Acoplado (ICP-AES), y cromatografía iónica (IC), respectivamente [13].

Basándonos en la condición adosativa propia de la planta acuática Lemna sp se elaboraron filtros cuya composición es pulpa de papel reciclado y dicha planta; empleando un muestreador de partículas atmosféricas y siguiendo todo el procedimiento que se realiza para un muestreo de partículado y metales se determinó la concentración de los metales Al, B, Cu, Mg, Na, Ni y Zn, tomando como único punto de muestreo la Facultad Experimental de Ciencias, en la Universidad del Zulia, específicamente en el Departamento de Química.

Parte experimental

Elaboración de los filtros, pulpeo semiquímicos

Características del papel de filtro: Se emplearon papeles fabricados con pulpa *Lemna sp* y papel reciclado formulado a diversas composiciones. (80 % *Lemna sp* : 20 % papel reciclado, 50 % *Lemna sp* : 50 % papel reciclado, 100 % papel reciclado; 80 % papel reciclado : 20 % *Lemna sp*).

Características de la muestra: La muestra de la especie vegetal *Lemna sp* fue recolectada a orilla del Lago de Maracaibo, Municipio San Francisco, Edo. Zulia, y enviada fresca a la Universidad de los Andes, Laboratorio Nacional de Productos Forestales perteneciente a la Facultad de Ciencias Forestales y Ambientales en el Edo. Mérida para su procesamiento, pulpeo y elaboración del papel bajo la norma TAPPI T – 205 m95. La captación de material particulado se realizó en la Universidad del Zulia, Facultad Experimental de Ciencias, Maracaibo – Edo. Zulia, Venezuela.

Equipos: Para la fabricación de la muestra de papel reciclado, ver figura 1, con *Lemna sp* se utilizó un refinerador PFI Mill, desfibrador canadiense standard, para determinar el factor de escurrimiento del papel y el formador de hojas, balanza analítica marca Sauter GMBH-D-7470; estos equipos fueron proporcionados por el Laboratorio Nacional de Productos Forestales, de la Facultad de Ciencias Forestales y Ambientales en la Universidad de los Andes, Edo. Mérida.

Para la recolección de las muestras se utilizaron muestreros de aire de alto volumen, ver figura 2: Hi-Vol Air samplers ANDERSEN, S/N 3218. Las muestras digeridas, se analizaron a través del Espectrofotómetro de Emisión Atómica con Plasma Indirectamente Acoplado (ICP-AES), ver figura 3 y 4, mediante el cual se obtuvieron las concentraciones de los elementos metálicos en soluciones.

Reactivos: En el presente estudio se emplearon reactivos de gradación analítico- estricto (verified) de los estándares analítico USP. HCl 0.1 M (Merck); NaOH 0.1 M (Merck); HNO3 0.1 M (Panreac); HCl 0.1 M (Merck).

Figura 1: Filtro elaborado con *Lemna sp* y papel reciclado, de composición 50 % PR + 50 % L, empleado para la captación de particulado

Figura 2: Muestreador de aire de alto volumen (Hi-Vol Air samplers ANDERSEN, S/N 3218)

Espectrofotómetro de Emisión Atómica con Plasma Indirectamente Acoplado (ICP-AES), y cromatografía iónica (IC), respectivamente [13].

Basándonos en la condición adipotasa propia de la planta acuática *Lemna sp* se elaboraron filtros cuya composición es pulpa de papel reciclado y dicha planta; empleando un muestreador de partículas atmosféricas y siguiendo todo el procedimiento que se realiza para un muestreo de partículado y metales se determinó la concentración de los metales Al, B, Cu, Mg, Na, Ni y Zn, tomando como único punto de muestreo la Facultad Experimental de Ciencias, en la Universidad del Zulia, específicamente en el Departamento de Química.

Metodología: Concentración de metales pesados en muestreros de partículas atmosféricas y metales pesados

Previo al análisis de los filtros se realizó un lavado con agua destilada. Luego se seca en estufa a 50 °C y pesa en balanza analítica. Los filtros se analizaron utilizando un espectrofotómetro de emisión atómica con plasma indirectamente acoplado (ICP-AES). Para la determinación de los metales pesados se empleó una solución diluida de 0.1 M de ácido nítrico. Los resultados se expresan en microgramos por litro (µg/L). Los filtros se analizaron en triplicado y los resultados se presentan como promedio de los valores obtenidos.

Figura 3: Espectrofotómetro de Emisión Atómica con Plasma Indirectamente Acoplado (ICP-AES)

Figura 4: Análisis de la muestra
les pesados. Se recolectarán partículas atmosféricas para la posterior evaluación según la presencia y concentración de metales pesados y particulado en el mismo. El tratamiento de la muestra se realizó tomando ¼ del papel de filtro y recortándolo en trozos, se colocó en un beaker de teflón de 125 mL. Se adicionaron 10 mL de HF concentrado y se calentó suavemente en una plancha de calentamiento casi hasta sequedad; luego se agregaron 10 mL de HNO₃ concentrado y se continuó calentando hasta que solo quedaran unas pocas gotas de ácido. Por último se añadió 10 mL de H₂O desionizada y se calentó hasta ebullición. La solución caliente se filtró al vacío a través de un embudo buchner utilizando papel de filtro Whatman # 41. El beaker de teflón se lavó con una porción de H₂O destilada, se calentó y se filtró; se reunieron los filtrados en un balón de 25 mL y se aforaron. La solución fue transferida a un envase de polietilene, previamente lavado y curado, conservándose refrigerado hasta el posterior análisis. El análisis se realizó por duplicado. El otro filtro se empleó como blanco y el tratamiento fue el mismo que el anterior.

Para el cálculo de las concentraciones de metales pesados en el material particulado en μg/m³ se utilizaron las siguientes fórmulas:

Para el volumen de aire muestreado:

\[V_{aire} = t \cdot 67,92 \]

Donde, \(V_{aire} \) es el volumen de aire muestreado expresado en m³, \(t \) es el tiempo de muestreo expresado en horas.

Para la concentración en μg/m³ en el filtro total:

\[\left[\frac{μg}{m³} \right] = \frac{μg/mL \cdot V}{4 \cdot V_{aire}} \]

Donde, μg/mL es la concentración determinada por el absorción atómica menos la concentración blanco-control; \(V \) corresponde al volumen de solución de aforo a 25 mL; 4 es el número de partes en que se dividió el filtro para el análisis; \(V_{aire} \) es el número de aire muestreado en m³.

Resultados y Discusión

Se elaboraron papeles de composición 50 % L + 50 % PR, con dimensiones iguales a los filtros empleados para la recolección de partículas atmosféricas mediante un muestreador de aire para PST, durante 16 horas de muestreo, con un volumen de aire muestreado de 1081,92 m³. Luego de la recolección se realizó el tratamiento de muestras, para determinar la concentración de metales pesados en el filtro, los parámetros analíticos empleados para dicha determinación se presentan en la tabla 1.

Se realizaron 3 replicas, vista axial, empleando argón como gas de arrastre, el flujo de la bomba 50 rpm, flujo del análisis 50 rpm, tiempo de estabilización 5 seg., RF power 1150 W y el flujo del gas auxiliar es de 0,5 L/min.

La presencia de material particulado se determinó por diferencia de peso [13], los resultados se muestran en la tabla 2.

En la tabla 2 se muestra la presencia de material particulado, en el papel empleado como filtro de composición 50 % L + 50 % PR, para la determinación de concentraciones de metales Al, B, Cu, Mg, Na y Zn, se realizó el tratamiento de muestra que se aplica a filtros para PST, comparándolo con un blanco - control de la misma composición, los resultados de este análisis se muestran en la tabla 3.

La tabla 3 muestra las concentraciones de metales presentes en el filtro empleado como muestreador de 50 % L + 50 % PR, reportándose concentraciones mayores de B > Na > Cu > Al > Mg > Zn, no se descarta la coleción de otros metales y de cationes en la muestra.

Con estos resultados se demuestra la capacidad adsorbtiva que tienen estos filtros gracias a su diseño y poder de retención, generando un impacto ambiental positivo por el uso de la planta acuática Lemna sp, que en un principio ocasionó graves problemas en el ecosistema de Lago de Maracaibo y hoy se presenta como una buena solución.

El aumento del consumo del papel en el mundo y las previsiones de crecimiento, se sustentan en modelos económicos insostenibles, enormemente derrochadores y contrarios al principio de precaución con el Medio Ambiente [16]. En muchos países cuya disponibilidad de recursos forestales suministradores de fibra virgen son limitados, este reto se enfrente utilizando fibra reciclada que impacta directamente y positivamente sobre el medio ambiente, ya que disminuye la demanda de recursos forestales y facilita el empleo de una fracción sólida de los residuos urbanos (papel) [12]. Ahora bien combinando estos residuos agroindustriales con una fuen te alternativa relevante para la fabricación de papel; el costo del pulpeo oscila en $40/TM comparando con $ 100/TM para la pulpa maderable.

Conclusiones

1. Se propone la fabricación de filtros con otros desechos orgánicos, entre estos pino, eucaliptus, plátano y caucho.

2. Emplear los papeles con diversos composiciones para la captación de partículas atmosféricas y presencia de metales pesados, al igual para la adsorción de CO₂.

3. En vista de que el papel empleado como blanco – control, en el estudio de partículas atmosféricas presentó concentraciones de metales pesados, se propone aplicar hidrólisis básica, con el fin de extraer los metales presentes en el papel.

4. Se recomienda aplicar nuevas técnicas para el blanqueo, de los diferentes papeles empleados como filtros.

Referencias bibliográficas

8. Odriozola V. 1997. “Impactos de la producción de papel”. Art. 2,3,6,

11. “La industrialización, los metales pesado y la salud” www.buenosdiasplaneta.org

14. “Espectroscopia de emisión por Plasma de acoplamiento Inductivo”. www.ua.es

Yandrelis Paz: ypaz@inizit.gob.ve
Marinela Colina: colinamarinela@gmail.com

Autores
Yandrelis Paz¹, Marinela Colina¹⁴, Rodolfo Salas², Antonio Aguilera³, Renny Díaz¹ y Brinolfo Montilla⁴