Origen biosintético de las unidades isoprénicas en cromenos de Piper aduncum (Piperaceae)

Biosynthetic origin of the isoprene units in chromenes of Piper aduncum (Piperaceae)

Ana C. Leite, Adriana A. Lopes, Massuo J. Kato, Vanderlan da S. Bolzani y Maysa Furlan

Metabolic studies involving the incorporation of [1-13C]-D-glucose into intact leaves of Piper aduncum (Piperaceae) have indicated that both the mevalonate (MVA) and the pyruvate-triose (MEP: 2-C-methyl-D-glycollate-5-phosphate) non-mevalonate pathways are implicated in the biosynthesis of isoprene moieties present in methyl 2,2-dimethyl-1H-1-cromeno-6-carboxylate (1) and methyl 2,2-dimethyl-8-(3'-methyl-2'-butenyl)-2H-1-cromeno-6-carboxylate (2). The pattern of incorporation of label from [1-13C]-D-glucose into these chromenes was determined by quantitative 13C NMR spectroscopy. The results confirmed that biosynthetic compartment of 1 and 2 could either be the plastid and/or the cytosol or, possibly, an additional compartment such as the plastid inter-membrane space.

Keywords: Piper aduncum, chromenes, [1-13C]-D-glucose, mevalonate pathway, 2-C-methyl-D-glycollate-5-phosphate pathway.

Estudios metabólicos envolviendo la incorporación de D-glucosa-[1-13C] en hojas de Piper aduncum (Piperaceae) mostraron que las vías del mevalonato (MVA) y de la triosa-pirovato (MEP: 2-C-methyl-D-glycollato-5-fosfato) son involucradas en la biosíntesis de la unidad isopinérsica presente en el 2,2-dimetilt-1H-1-cromeno-6-carboxilato de metilo (1) y en el 2,2-dimetilt-8-(3'-metilt-2'-butilil)-2H-1-cromeno-6-carboxilato de metilo (2). El patrón de incorporación de los carbonos marcados de D-glucosa-[1-13C] en estos cromenos fue determinado a través de RMN de 13C cuantitativo. Los resultados confirmaron que el compartimento biosintético de 1 y 2 puede ser el plastido y/o citosol, o posiblemente un compartimiento adicional, como el espacio entre la membrana y el plastido.

Palabras clave: Piper aduncum, cromenos, D-glucosa-[1-13C], vía del mevalonato, vía del 2-C-metilt-1eritrol-5-fosfato.

Introducción

Los isoprenoides y terpenoides tienen IPP (isopentenil difosfato) como precursor biosintético, siendo que en el pasado, el ácido mevalónico era conocido como el único precursor biosintético responsable de la formación de las unidades de IPP. Más tarde, otra vía de formación de los terpenoides, denominada vía de la triosa-pirovato (MEP: 2-C-metilt-D-glycollato-5-fosfato), fue establecida [1]. La investigación de la biosíntesis que lleva a la formación de IPP se realiza a través de la incorporación in vivo de D-glucosa-[1-13C] y dependiendo de la vía de metabolización involucrada, la marca- ción de los carbonos de las unidades isopinérsicas será diferenciada. El análisis se realiza por RMN de 13C, verificándose el enriquecimiento de los carbonos C-2, C-4 y C-5 del IPP, en el caso de la vía mevalonida (MVA), y de los carbonos C-1 y C-5 cuando la vía operante es la MEP [2]. Estudios muestran que las dos vías pueden ocurrir de manera concomitante. Recientemente, fue reportada una modificación en la MEP, donde el carbón C-3 del IPP está marcado [3]. De esta manera, fueron diseñados estudios de compartimentalización en Piper aduncum para elucidar la vía biosintética terpenoidí- ca envuelta en la formación de las unidades isopinérsicas de los cromenos 2,2- dimetilt-1H-1-cromeno-6-carboxilato de metilo (1) y en el 2,2-dimetilt-8-3'-metilt-2'-butilil)-2H-1-cromeno-6-carboxilato de metilo (2), a partir de la incorporación de D-glucosa.-[1-13C].

Parte experimental

Material vegetal: Especímenes de Piper aduncum L. fueron cultivados en la caza de vegetación del Instituto de Química, UNESP, Araraquara, SP, Brasil. El material vegetal fue autenticado por la Dra. Inês Cordeiro (Instituto de Botánica, São Paulo, SP, Brasil) y una exiccada (Kato-57) está depositada en el Herbario del Estado “María Eneyda P. Kaufmann Fidalgo” (São Paulo, SP, Brasil).

Administración de D-glucosa-[1-13C]: Aproximadamente 350 hojas (210 g) de Piper aduncum fueron cortadas e incubadas con 100 μL de una solución acuosa de D-glucosa-[1-13C] 0,1 % a 25°C por 72 h [4,5].

Extracción y aislamiento: Después de la incubación, las hojas fueron enfría- das en N., liquido y extraídas con acetato de etilo (2 x 25 mL). El extracto resultante fue sometido a cromatografía líquida al vacío en sílice gel (70-230 mesh), eluida con hexano, acetato de etilo y MeOH, en modo gradiente. La fracción acetato de etilo fue aplicada a una columna C18 y eluida con MeOH:HO-10:8 (2-8), resultando cinco fracciones (A Æ E). La fracción C (0, 120 g) fue cromatografiada dos veces en columna de sílice gel (230-400 mesh) usando como eluyentes hexano:acectona (9:1), llevando al aislamiento de 1 (7,2 mg) y 2 (3,5 mg).

Espectroscopia: Los espectros de RMN de 13C de 1 y 2 obtenidos de los experimentos de incorporación usando D-glucosa-[1-13C] y del material vegetal con abundancia natural de 13C fueron realizados en las mismas condiciones experimentales con parámetros instrumentales idénticos. Las abundancias relativas de 13C en los átomos de carbonos individuales de 1 y 2 fueron calculadas a través de las integrales obtenidas de las muestras marcadas en comparación con aquellas con abundancia natural (Tabla 1). Los valores fueron normalizados con referencia a un valor de abundancia de 1,1 % para el carbono con el enriquecimiento de 13C más bajo. Los datos de RMN de 13C y de 13C obtenidos fueron comparados con la literatura [6,7].
Resultados y discusión

Las contribuciones relativas de dos vías de biosíntesis de unidades isoprénicas pueden ser determinadas a través de la marcación de las unidades CS de isoprenoides sintetizados a partir de D-glucosa-[1-13C]. La marcación derivada de D-glucosa-[1-13C] puede estar ubicada en C-2 de acetil CoA, así como en C-3 de piruvato y gliceradilico-3-fosfato. De esta manera, DMAF (dimetiladilico fosfato) surge a partir de tres moléculas de acetil CoA marcadas en C-2 a través de la MVA. Cuando el DMAF es formado a través de la MVA, por tres moléculas de acetil CoA marcadas en C-2, la marcación se halla en C-2, C-4 y C-5. En contraste, cuando la vía biosintética involucrada es la MEP, con el DMAF formado a partir de piruvato y gliceradilico-3-fosfato marcado en C-3, la marcación estará en C-1 y C-5 [3].

El espectro de RMN de 13C del 2,2-dimetil-8-(3’-metil-2’-butenil)-2H-1-cromeno-6-carboxilato de metilo (2), biosintetizado a partir de D-glucosa-[1-13C] mostró un aumento significativo en las señales en C-2’, C-4’ y C-5’ (Tabla 1), indicando formación de las unidades isoprenicas por la vía MVA, a la vez que se observa en la Figura 1. En el anillo pirano, sin embargo, fue observado un enriquecimiento en las posiciones C-4, C-9 y C-10, correspondientes, respectivamente, a C-1 y C-5 del IPP, derivado de la MEP.

Tabla 1: Abundancia relativa de 13C en 2,2-dimetil-2H-1-cromeno-6-carboxilato de metilo (1) y en 2,2-dimetil-8-(3’-metil-2’-butenil)-2H-1-cromeno-6-carboxilato de metilo (2), aislados de hojas de Piper aduncum incubadas con D-glucosa-[1-13C]

<table>
<thead>
<tr>
<th>cromeno 1</th>
<th>cromeno 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carb. δ (ppm)*</td>
<td>Enriquecimiento relativo (%)</td>
</tr>
<tr>
<td>2</td>
<td>77.4</td>
</tr>
<tr>
<td>3</td>
<td>131.1</td>
</tr>
<tr>
<td>4</td>
<td>121.7</td>
</tr>
<tr>
<td>5</td>
<td>128.1</td>
</tr>
<tr>
<td>6</td>
<td>122.5</td>
</tr>
<tr>
<td>7</td>
<td>131.1</td>
</tr>
<tr>
<td>8</td>
<td>116.1</td>
</tr>
<tr>
<td>4a</td>
<td>120.6</td>
</tr>
<tr>
<td>8a</td>
<td>157.2</td>
</tr>
</tbody>
</table>

9 and 10: 28.3 8.8 28.3 8.8

* RMN de 13C: 125 MHz; CDCl3

El precursor biosintético del cromeno 2, 2,2-dimetil-2H-1-cromeno-6-carboxilato de metilo (1), presentó un enriquecimiento similar al observado en el anillo pirano de 2 (Tabla 1), de acuerdo con la incorporación de la D-glucosa-[1-13C] vía MEP. Estos datos confirman que la prenilación inicial del ácido p-hidroxibenzoico, precursor de los cromenos 1 y 2, está compartimentalizada en el plastidio (Figura 1). Sin embargo, la segunda etapa de preniliación que ocurre en 2 envuelve la MVA. Esto indica que es posible que la biosíntesis del cromeno prenilado 2 envuelva “cross-talk” entre el plastidio y el citosol.

Agradecimientos

Los autores agradecen a FAPESP, BIOTA-FAPESP y CAPES por los financiamientos otorgados.

Referencias

Ana C. Leite*, Adriana A. Lopes³, Massuo J. Kato³, Vanderlan da S. Bolzani³ y Maysa Furlan³

* Instituto de Química, Universidade Estadual Paulista, 14801-970, Araraquara-SP, Brazil

² Instituto de Química, Universidade de São Paulo, 05599-970, São Paulo-SP, Brazil

³ Corresponding author.

Tel.: +55 16 3301 6600; fax: +55 16 3301 6692

E-mail: acrilteite@gmail.com

Nota del editor: A este trabajo le fue otorgado uno de tres premios LabCiencia durante el Congreso Anual 2007 de la Sociedad Brasileña de Química – Seção Produtos Naturais.