Cromatografía en fase reversa con geles de sílice modificados – Observaciones acerca de la estabilidad y la selectividad

Introducción
La cromatografía líquida de alta eficiencia con fases reversas (‘fase estacionaria no polar, fase móvil orgánica acuosa’) es el método de separación estándar empleado en la analítica instrumental. Para ningún otro tipo de cromatografía líquida existen hoy en día tantas fases estacionarias como para la HPLC en fase reversa, lo cual no hace nada fácil la selección de la fase adecuada para el usuario.

Los geles de sílice particulados siguen siendo los soportes más utilizados para la síntesis de fases reversas, aunque también se usan otros materiales como resinas copoliméricas de poliestireno/divinilbenceno[1,2], circonio o dióxido de titanio[3-5]. Igualmente se vienen empleando desde hace algunos años materiales monolíticos de soporte[6]. De las fases con superficie modificada, la C18 es mucho más empleada que la C8, fenilo y C4. Tanto así, que la cantidad de columnas C18 que se ofrecen hoy en día en el mercado es enorme, aumentando la inseguridad del usuario. Los intentos de clasificación basados en estudios comparativos de columnas han probado ser una herramienta útil para aclarar un poco la confusión frente a la oferta cada vez mayor de fases reversas[7,8].

Sin embargo, en el desarrollo de métodos no sólo tienen que adaptarse las propiedades de retención y selectividad de la fase estacionaria al problema analítico dado, sino que igualmente existen innumerables posibilidades de variación de la fase móvil (p.ej. para mejorar la retención de analitos polares), siendo justamente las optimizaciones muy efectivas en el sistema de eluentes, tales como adaptaciones del valor pH o alto contenido de agua, las que pueden llevar a problemas de estabilidad en la fase estacionaria.

Retención, valor pH y selectividad
Una desventaja de las fases reversas con gel de sílice que no se debe subestimar es su limitada estabilidad frente a las fases móviles con un pH muy ácido o muy básico. La degradación de la superficie modificada (ruptura del enlace siloxano) por hidrólisis en presencia de fases muy básicas (con un pH de menos de 2), o la disolución de la matriz de gel debido a valores pH muy altos (más de 8), son posibles consecuencias de trabajar por tiempos prolongados con valores pH extremos. El empleo de un valor pH alto en el desarrollo de métodos sólo ofrece ventajas, cuando p.ej. tienen que separarse sustancias activas alcalinas que han sido protonadas en condiciones ácidas y por lo tanto mostrarían una retención muy baja de la fase estacionaria. El ejemplo de Aplicación 1 muestra la separación de cuatro alcaloides, una vez con pH 2,5 y otra vez con pH 10. En el medio ácido, las uniones protonadas eluyen temprano debido a la poca retención, siendo la resolución de papaverina y noscapina insuficiente. Con pH 10, en cambio, las moléculas cargadas de forma neutra con un patrón de retención altamente mejorado pueden ser...
separadas con una alta resolución de picos. Éste es un ejemplo de cómo puede mejoraarse la selectividad de un sistema de separación cambiando el valor pH. El empleo de silanos C18 especiales con síntesis mejoradas del gel de sílice y modificaciones de superficie hace que las fases muestren una estabilidad mucho más alta frente a valores pH extremos. La fase NUCLEODUR C18 Gravity empleada en el ejemplo de aplicación 1 es estable en un rango de pH entre 1 y 11. Esta estabilidad del gel de sílice al pH se debe, en primer lugar, a un efecto cinético basado en la velocidad de disolución de la matriz de sílice. En general, la estabilidad de las fases está en correlación natural con otros parámetros tales como la temperatura y el tipo de tampón empleado. Como bien es sabido, si se utilizan sistemas tampón de fosfato o borato —sobre todo con altas temperaturas de trabajo— la vida de la columna será muchomás corta que a temperaturas ambiente y con tanques orgánicos.

Apliación 1: Separación de alcaloides básicos; 1. Lidocaína, 2. Papaverina; 3. Noscapina; 4. Difenhidramina. Columna: 125 x 4 mm NUCLEODUR® C18 Gravity, 5 mm; Eluyente A: acetonitrile; Eluyente B: 20 mM (NH₄)₂HPO₄, pH 2.5 / 10.0; Gradiente: 10 % A (1 min) / 75 % A en 10 min; Flujo: 1.0 ml/min; Temperatura: 25 ºC; Detección: UV, 254 nm; Volumen inyectado: 2 µl.

Eluyentes acuosos con fases C18. ¿Es posible combinarlos?
Las fases móviles reversas usuales con un contenido de agua >95% tienden a mostrarnos problemas de estabilidad, lo que puede llevar a una pérdida de retención y consecuentemente a un colapso completo de la separación. Este fenómeno, conocido como colapso de fase, ocurre sobre todo con fases hidrófobicas que tienen un buen recubrimiento final y cuyos silanoles muestran sólo una actividad mínima, y por lo tanto son aptas para separar análogos ionizables que tienden a formar picos con cola. Actualmente existen varias estrategias para mejorar la impregnabilidad con agua de las fases C18 y mantener al mismo tiempo las características específicas de retención y recubrimiento de la superficie. Entre éstas pueden mencionarse el empleo de fases reversas con un grupo polar incrustado[9], o de fases con recubrimiento final hidrófobo. Según la relación de Young y Laplace de infiltración de capilares (Pc = 4γ cos θ/d), el parámetro determinante es el ángulo de contacto θ entre la fase móvil y la fase estacionaria, del cual resulta la presión P necesaria para que la fase móvil con la tensión superficial g pueda entrar en los poros de diámetro d de la fase estacionaria. Si el ángulo de contacto es >90°, existe el riesgo de que la fase móvil se salga del poro con una disminución de flujo. En fases reversas polares como las mencionadas arriba, el ángulo es evidentemente mejor (>90°) produciéndose una completa infiltración en los poros[10]. En el ejemplo de Apliación 2, se compara el comportamiento de retención de tres ácidos orgánicos en condiciones completamente acuosas antes y después de desconectar la bomba. El tiempo de retención de los tres componentes se mantiene igual en la columna con recubrimiento hidrófobo NUCLEODUR® C18 Pyramid, mientras que en la columna C18 con recubrimiento convencional se produjo un co-

Aplicación 2: Absorbente: a) NUCLEODUR® C18 Pyramid; 5 mL Flujo: 0.7 min/l; b) Columna RP convencional; Temp.: 25°C; Columna 125 x 4 mm; Det.: UV, 210 nm; Eluyente 50 mM KH₂PO₄; pH 2.3; vol. inyect.: 1 µl; Picos: 1. ácido tartárico; 2. ácido acético; 3. ácido maleico.

Conclusión
La utilización de silanos novedosos para modificar la superficie del gel de sílice de alta pureza amplía la oferta de fases reversas con nuevas selectividades y estabilidades. El rango de pH de 2-8 hasta ahora recomendado para obtener separaciones óptimas en columnas de gel de sílice ha sido ampliado todavía más, lo que ofrece interesantes posibilidades para el desarrollo de métodos más robustos. En otro caso pudo mejorarse enormemente la retención de moléculas muy polares con sistemas de eluyentes 100% acuosos sin que la fase fuera afectada.

Referencias bibliográficas

Dr. Dirk Rieger, MACHEREY-NAGEL GmbH & Co. KG, Dueren 
drieger@mn-net.com